Compressed sensing MRI via fast linearized preconditioned alternating direction method of multipliers

نویسندگان

  • Shanshan Chen
  • Hongwei Du
  • Linna Wu
  • Jiaquan Jin
  • Bensheng Qiu
چکیده

BACKGROUND The challenge of reconstructing a sparse medical magnetic resonance image based on compressed sensing from undersampled k-space data has been investigated within recent years. As total variation (TV) performs well in preserving edge, one type of approach considers TV-regularization as a sparse structure to solve a convex optimization problem. Nevertheless, this convex optimization problem is both nonlinear and nonsmooth, and thus difficult to handle, especially for a large-scale problem. Therefore, it is essential to develop efficient algorithms to solve a very broad class of TV-regularized problems. METHODS In this paper, we propose an efficient algorithm referred to as the fast linearized preconditioned alternating direction method of multipliers (FLPADMM), to solve an augmented TV-regularized model that adds a quadratic term to enforce image smoothness. Because of the separable structure of this model, FLPADMM decomposes the convex problem into two subproblems. Each subproblem can be alternatively minimized by augmented Lagrangian function. Furthermore, a linearized strategy and multistep weighted scheme can be easily combined for more effective image recovery. RESULTS The method of the present study showed improved accuracy and efficiency, in comparison to other methods. Furthermore, the experiments conducted on in vivo data showed that our algorithm achieved a higher signal-to-noise ratio (SNR), lower relative error (Rel.Err), and better structural similarity (SSIM) index in comparison to other state-of-the-art algorithms. CONCLUSIONS Extensive experiments demonstrate that the proposed algorithm exhibits superior performance in accuracy and efficiency than conventional compressed sensing MRI algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k

Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...

متن کامل

Deep ADMM-Net for Compressive Sensing MRI

Compressive Sensing (CS) is an effective approach for fast Magnetic Resonance Imaging (MRI). It aims at reconstructingMR image from a small number of undersampled data in k-space, and accelerating the data acquisition in MRI. To improve the current MRI system in reconstruction accuracy and computational speed, in this paper, we propose a novel deep architecture, dubbed ADMM-Net. ADMMNet is defi...

متن کامل

Efficient ℓq Minimization Algorithms for Compressive Sensing Based on Proximity Operator

This paper considers solving the unconstrained lq-norm (0 ≤ q < 1) regularized least squares (lq-LS) problem for recovering sparse signals in compressive sensing. We propose two highly efficient first-order algorithms via incorporating the proximity operator for nonconvex lq-norm functions into the fast iterative shrinkage/thresholding (FISTA) and the alternative direction method of multipliers...

متن کامل

A Proximal Point Analysis of the Preconditioned Alternating Direction Method of Multipliers

We study preconditioned algorithms of alternating direction method of multipliers type for non-smooth optimization problems. The alternating direction method of multipliers is a popular first-order method for general constrained optimization problems. However, one of its drawbacks is the need to solve implicit subproblems. In various applications, these subproblems are either easily solvable or...

متن کامل

Stochastic ADMM for Nonsmooth Optimization

Alternating Direction Method of Multipliers (ADMM) gained lost of attention due to LargeScale Machine Learning demands. • Classic (70’s) and flexible, Survey paper: (Boyd 2009) • Applications: compressed sensing (Yang & Zhang, 2011), image restoration (Goldstein & Osher, 2009), video processing and matrix completion (Goldfarb et al., 2010) • Recent variations: Linearized (Goldfarb et al., 2010;...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2017